為了獲得細(xì)晶粒,最重要的是通過相變盡量多形核。為增大形核速度,就必須增加形核密度,增大形核驅(qū)動(dòng)力。在低碳鋼和低合金鋼中,在γ→α相變時(shí),為細(xì)化鐵素體晶粒,主要采用圖1所示的四種方法:(1)盡量細(xì)化相變前母相奧氏體的晶粒;(2)改變相變前母相奧氏體的狀態(tài),使處于形變硬化狀態(tài)的奧氏體產(chǎn)生相變;(3)使奧氏體晶粒內(nèi)彌散分布適當(dāng)?shù)奈龀鑫锖蛫A雜物;(4)盡量增大冷卻速度。由上述的四種方法可以看出,(1)、(2)、(3)都是增加鐵素體形核位置的方法,第(4)項(xiàng)盡量增大冷卻速度的方法,就是增大過冷度,增大相變時(shí)形核驅(qū)動(dòng)力的方法。根據(jù)鋼中采用的微合金化元素的不同,上述方法的選擇和組合也不同。對采用鈮、鈦微合金化鋼來說,選擇(2)+(4)組合比較合適;但對采用釩、氮微合金化的鋼來說,則選擇(1)+(3)+(4)組合比較合適。相對而言,前者更適用于扁平鋼材,如中厚鋼板,后者更適用于長形鋼材,如鋼筋、鋼棒和角鋼等。 圖1 通過相變細(xì)化鐵素體晶粒的四種方法((1)~(4)) V-N微合金化是利用V和N的一項(xiàng)復(fù)合微合金化技術(shù),是發(fā)展量大面廣微合金化鋼的一項(xiàng)具有普遍性的技術(shù),具有其他微合金元素(Nb、Ti)所沒有的一些特點(diǎn)。 (1)容易實(shí)現(xiàn)奧氏體再結(jié)晶細(xì)化。在高溫奧氏體再結(jié)晶區(qū)熱軋時(shí),釩鋼的奧氏體再結(jié)晶阻力比較小,容易產(chǎn)生奧氏體的再結(jié)晶,隨著高溫下熱軋的反復(fù)進(jìn)行,奧氏體將發(fā)生反復(fù)的再結(jié)晶,可有效破碎原始奧氏體晶粒,使原始奧氏體母相細(xì)化,增加單位體積中的晶界總面積。通過這種細(xì)化方法可使原始奧氏體晶粒細(xì)化到20μm。原始組織的細(xì)化對鋼的最終性能將產(chǎn)生很重要的影響。 在V-N微合金化鋼中,氮對細(xì)化原始奧氏體晶粒也有重要作用。圖2示出了氮對釩鋼奧氏體晶粒尺寸的影響,由圖可以看出,氮含量對奧氏體晶粒尺寸有顯著影響。隨著氮含量的增加,在不同的釩含量下,奧氏體晶粒尺寸都明顯減小。 圖2 氮對釩鋼細(xì)化奧氏體晶粒尺寸的影響 (2)氮促進(jìn)釩的析出及晶內(nèi)鐵素體形核。與鈮、鈦相比,釩具有更高的溶解度,這表明在較低的溫度下釩都能溶解。當(dāng)鋼中的氮含量高于0.010%時(shí),VN可在奧氏體中析出,析出最快溫度為860~900℃,這增加了奧氏體母相中彌散分布的析出物和夾雜物(在此條件下為析出物),增加了相變后鐵素體的形核位置和形核密度,為細(xì)化鋼的組織奠定了基礎(chǔ)。 利用夾雜物(或析出物)作為額外的鐵素體形核位置促進(jìn)鐵素體形成,通常被稱為夾雜物冶金學(xué),被認(rèn)為是繼控制軋制和加速冷卻工藝之后的一種新型組織細(xì)化工藝,引起了廣泛的關(guān)注。根據(jù)錯(cuò)配理論,析出物(夾雜物)對鐵素體形核的促進(jìn)能力取決于析出物(夾雜物)與鐵素體之間界面的晶格共格性。對不同析出物(夾雜物)與鐵素體之間的界面能及形核驅(qū)動(dòng)力進(jìn)行了計(jì)算,如圖3所示,在各種析出物(夾雜物)中,VN和TiN促進(jìn)鐵素體的形核能力最高。VN的晶體結(jié)構(gòu)與鐵素體非常接近,可以降低鐵素體形核的界面能,促進(jìn)晶內(nèi)鐵素體(IGF)的形成。VN與鐵素體(100)晶面的錯(cuò)配度比較小,也就是說,VN與晶內(nèi)鐵素體(IGF)有良好的共格關(guān)系,因此VN對晶內(nèi)鐵素體(IGF)的形成是非常有利的。利用V-N微合金化技術(shù),通過VN在奧氏體和V(C,N)在鐵素體中析出,促進(jìn)晶內(nèi)鐵素體(IGF)的形成,細(xì)化鐵素體晶粒,在提高強(qiáng)度的同時(shí)改善鋼的韌性,這種組織細(xì)化的新型工藝在很多鋼中已獲得廣泛的應(yīng)用。在V-N微合金鋼中,若同時(shí)存在大量細(xì)小的MnS和較高的氮含量時(shí),在MnS周圍形成貧錳區(qū),可進(jìn)一步促進(jìn)VN在MnS上析出,增加晶內(nèi)鐵素體的形核位置,細(xì)化鋼的組織,提高鋼的韌性,易切削非調(diào)質(zhì)鋼就是一個(gè)典型的實(shí)例。 圖3 不同析出物(夾雜物)與鐵素體之間的界面能對形核驅(qū)動(dòng)力的影響 σγx—γ相與析出物(夾雜物)的界面能; σαx—α相與析出物(夾雜物)的界面能; (3)采用加速冷卻方法,盡量增大冷卻速度。V-N微合金化鋼,在再結(jié)晶細(xì)化原始奧氏體晶粒和VN在奧氏體中析出的基礎(chǔ)上,通過熱軋后的加速冷卻,盡量增大冷卻速度,增大過冷度,就可增大相變時(shí)的生核驅(qū)動(dòng)力,提高相變后鐵素體的生核密度,細(xì)化鐵素體晶粒。 通過上述介紹,綜合采用:(1)奧氏體再結(jié)晶細(xì)化,細(xì)化原始奧氏體晶粒;(2)VN或富氮的 V(C,N)在奧氏體中析出,增加相變過程中和相變后鐵素體的生核位置;(3)加速冷卻,增大相變時(shí)的生核驅(qū)動(dòng)力等方法,V-N微合金化鋼同樣可獲得與鈮微合金化鋼相同的鐵素體晶粒細(xì)化水平(約4μm)。通常,為改善鋼的焊接性和阻止高溫奧氏體晶粒的粗化,V-N微合金化鋼通常添加0.01%Ti,優(yōu)化為 V-Ti-N微合金化鋼,利用鋼中形成的細(xì)小TiN粒子,可有效阻止熱軋道次間和軋制后奧氏體晶粒的長大,同時(shí),細(xì)小TiN粒子非常穩(wěn)定,在1350℃的焊接熱循環(huán)下也不分解和粗化,有效阻止在該溫度下奧氏體晶粒的長大,顯著改善焊接熱影響區(qū)(HAZ)韌性,因此,V-Ti-N微合金化不僅細(xì)化了鋼的鐵素體晶粒,而且改善了鋼的韌性和焊接性等綜合性能。采用再結(jié)晶控軋工藝生產(chǎn)的V-N鋼和V-Ti-N鋼,均可獲得與鈮微合金化鋼相同的鐵素體晶粒細(xì)化水平。兩者相比,V-N微合金化鋼還有許多技術(shù)優(yōu)勢:V-N微合金化鋼加熱溫度低,終軋溫度高,生產(chǎn)效率高,熱軋工藝更經(jīng)濟(jì);與鈮鋼、鈦鋼相比,釩鋼的再結(jié)晶終止溫度最低,適于高溫再結(jié)晶控制軋制,通過反復(fù)再結(jié)晶細(xì)化原始奧氏體晶粒;V-N微合金化顯著提高了奧氏體→鐵素體轉(zhuǎn)變的相變比率,進(jìn)一步細(xì)化了相變后的鐵素體晶粒,在相同的奧氏體晶粒尺寸下,V-N微合金化鋼的相變細(xì)化率遠(yuǎn)遠(yuǎn)高于C-Mn鋼,這表明即使奧氏體晶粒尺寸相同,最終V-N微合金化鋼的鐵素體晶粒也要細(xì)小得多。
? 請關(guān)注 微信公眾號: steeltuber. 轉(zhuǎn)載請保留鏈接: http://www.bviltd.cn/Steel-Knowledge/1604473201.html
|