合金鋼管磷化處理工藝,共分12項,包括:工藝介紹、發(fā)展歷史、原理、分類、工藝流程、影響因素、質量檢驗,本文講解較詳細,字數較多閱讀需耐心。
一、認識與了解
1、定義
磷化(phosphorization)是一種化學與電化學反應形成磷酸鹽化學轉化膜的過程,所形成的磷酸鹽轉化膜稱之為磷化膜,磷化膜用作合金鋼管的防腐蝕保護膜。
2、作用
磷化的目的主要是:給基體金屬提供保護,在一定程度上防止金屬被腐蝕;用于涂漆前打底,提高漆膜層的附著力與防腐蝕能力;在金屬冷加工工藝中起減摩潤滑使用。
3、發(fā)展歷史
磷化處理工藝應用于工業(yè)己有90多年的歷史,大致可以分為三個時期:奠定磷化技術基礎時期、磷化技術迅速發(fā)展時期和廣泛應用時期。
最早的可靠記載是英國Charles Ross于1869年獲得的專利(B.P. N o.3119)。從此,磷化工藝應用于工業(yè)生產。在近一個世紀的漫長歲月中,磷化處理技術積累了豐富的經驗,有了許多重大的發(fā)現。
一戰(zhàn)期間,磷化技術的發(fā)展中心由英國轉移至美國。1909年美國T.W.Coslet將鋅、氧化鋅或磷酸鋅鹽溶于磷酸中制成了第一個鋅系磷化液。這一研究成果大大促進了磷化工藝的發(fā)展,拓寬了磷化工藝的發(fā)展前途。Parker防銹公司研究開發(fā)的Parco Power配制磷化液,克服T許多缺點,將磷化處理時間提高到lho 1929年Bonderizing磷化工藝將磷化時間縮短至10min, 1934年磷化處理技術在工業(yè)上取得了革命性的發(fā)展,即采用了將磷化液噴射到工件上的方法。
二戰(zhàn)結束以后,磷化技術很少有突破性進展,只是穩(wěn)步的發(fā)展和完善。磷化廣泛應用于防蝕技術,金屬冷變形加工工業(yè)。這個時期磷化處理技術重要改進主要有:低溫磷化、各種控制磷化膜膜重的方法、連續(xù)鋼帶高速磷化。
當前,磷化技術領域的研究方向主要是圍繞提高質量、減少環(huán)境污染、節(jié)省能源進行。
二、磷化原理
1、磷化
工件(鋼鐵或鋁、鋅件)浸入磷化液(某些酸式磷酸鹽為主的溶液),在表面沉積形成一層不溶于水的結晶型磷酸鹽轉換膜的過程,稱之為磷化。
2、磷化原理
鋼鐵件浸入磷化液(由Fe(H2PO4)2、 Mn(H2PO4)2、 Zn(H2PO4)2 組成的酸性稀水溶液,PH值為1-3,溶液相對密度為1.05-1.10)中,磷化膜的生成反應如下:
吸熱
3Zn(H2PO4)2 =Zn3(PO4)2↓+4H3PO4 或
吸熱
吸熱
3Mn(H2PO4)2 =Mn3(PO4)2↓+4H3PO4
吸熱
鋼鐵工件是鋼鐵合金,在磷酸作用下,Fe和FeC3形成無數原電池,在陽極區(qū),鐵開始熔解為Fe2+,同時放出電子。
Fe+2H3PO4= Fe (H2PO4)2+H2↑
Fe =Fe2+ +2e-
在鋼鐵工件表面附近的溶液中Fe2+不斷增加,當Fe2+與HPO42-,PO43-濃度大于磷酸鹽的溶度積時,產生沉淀,在工件表面形成磷化膜:
Fe(H2PO4)2= FeHPO4↓+ H3PO4
Fe+ Fe(H2PO4)2 =2FeHPO4↓+ H2↑
3FeHPO4= Fe 3(PO4)2↓+ H3PO4
Fe+ 2FeHPO4 =Fe 3(PO4)2↓+H2↑
陰極區(qū)放出大量的氫:
2H+ +2e- =H2↑
O2 + 2H20 =4e- + 4OH-
總反應式:
吸熱
3Zn(H2PO4)2= Zn3(PO4)2↓+4H3PO4
吸熱
吸熱
Fe+3Zn(H2PO4)2= Zn3(PO4)2↓+FeHPO4↓+3 H3PO4+2 H2↑
放熱
三、磷化分類
1、按磷化處理溫度分類
(1)高溫型
80—90℃處理時間為10-20分鐘,形成磷化膜厚達10-30g/m2,溶液游離酸度與總酸度的比值為1:(7-8)
優(yōu)點:膜抗蝕力強,結合力好。
缺點:加溫時間長,溶液揮發(fā)量大,能耗大,磷化沉積多,游離酸度不穩(wěn)定,結晶粗細不均勻,已較少應用。
(2)中溫型
50-75℃,處理時間5-15分鐘,磷化膜厚度為1-7 g/m2,溶液游離酸度與總酸度的比值為1:(10-15)
優(yōu)點:游離酸度穩(wěn)定,易掌握,磷化時間短,生產效率高,耐蝕性與高溫磷化膜基本相同,目前應用較多。
(3)低溫型
30-50℃ 節(jié)省能源,使用方便。
(4)常溫型
10-40℃ 常(低)溫磷化(除加氧化劑外,還加促進劑),時間10-40分鐘,溶液游離酸度與總酸度比值為1:(20-30),膜厚為0.2-7 g/m2。
優(yōu)點:不需加熱,藥品消耗少,溶液穩(wěn)定。
缺點:處理時間長,溶液配制較繁。
2、按磷化液成分分類
(1)鋅系磷化
(2)鋅鈣系磷化
(3)鐵系磷化
(4)錳系磷化
(5)復合磷化 磷化液由鋅、鐵、鈣、鎳、錳等元素組成。
3、按磷化處理方法分類
(1)化學磷化
將工件浸入磷化液中,依靠化學反應來實現磷化,目前應用廣泛。
(2)電化學磷化
在磷化液中,工件接正極,鋼鐵接負極進行磷化。
4、按磷化膜質量分類
(1)重量級(厚膜磷化) 膜重7.5 g/m2以上。
(2)次重量級(中膜磷化)膜重4.6-7.5 g/m2。
(3)輕量級(薄膜磷化)膜重1.1-4.5 g/m2。
(4)次輕量級(特薄膜磷化)膜重0.2-1.0 g/m2。
5、按施工方法分類
(1)浸漬磷化
適用于高、中、低溫磷化 特點:設備簡單,僅需加熱槽和相應加熱設備,最好用不銹鋼或橡膠襯里的槽子,不銹鋼加熱管道應放在槽兩側。
(2)噴淋磷化
適用于中、低溫磷化工藝,可處理大面積工件,如汽車、冰箱、洗衣機殼體。特點:處理時間短,成膜反應速度快,生產效率高,且這種方法獲得的磷化膜結晶致密、均勻、膜薄、耐蝕性好。
(3)刷涂磷化
上述兩種方法無法實施時,采用本法,在常溫下操作,易涂刷,可除銹蝕,磷化后工件自然干燥,防銹性能好,但磷化效果不如前兩種。
四、磷化作用及用途
1、磷化作用
(1)涂裝前磷化的作用
①增強涂裝膜層(如涂料涂層)與工件間結合力。
②提高涂裝后工件表面涂層的耐蝕性。
③提高裝飾性。
(2)非涂裝磷化的作用
①提高工件的耐磨性。
②令工件在機加工過程中具有潤滑性。
③提高工件的耐蝕性。
2、磷化用途
鋼鐵磷化主要用于耐蝕防護和油漆用底膜。
(1)耐蝕防護用磷化膜
①防護用磷化膜 用于鋼鐵件耐蝕防護處理。磷化膜類型可用鋅系、錳系。膜單位面積質量為10-40 g/m2。磷化后涂防銹油、防銹脂、防銹蠟等。
②油漆底層用磷化膜
增加漆膜與鋼鐵工件附著力及防護性。磷化膜類型可用鋅系或鋅鈣系。磷化膜單位面積質量為0.2-1.0 g/m2(用于較大形變鋼鐵件油漆底層);1-5 g/m2(用于一般鋼鐵件油漆底層);5-10 g/m2(用于不發(fā)生形變鋼鐵件油漆底層)。
(2)冷加工潤滑用磷化膜
鋼絲、焊接鋼管拉拔 單位面積上膜重1-10 g/m2;精密鋼管拉拔 單位面積上膜重4-10 g/m2;鋼鐵件冷擠壓成型 單位面積上膜重大于10 g/m2。
(3)減摩用磷化膜
磷化膜可起減摩作用。一般用錳系磷化,也可用鋅系磷化。對于有較小動配合間隙工件,磷化膜質量為1-3 g/m2;對有較大動配合間隙工件(減速箱齒輪),磷化膜質量為5-20 g/m2。
(4)電絕緣用磷化膜
一般用鋅系磷化。用于電機及變電器中的硅片磷化處理。
五、磷化膜組成及性質
分類 磷化液主要成份 膜組成 膜外觀 單位面積膜重/ g/m2
鋅系 Zn(H2PO4)2 磷酸鋅和磷酸鋅鐵 淺灰→深灰 1-60
鋅鈣系 Zn(H2PO4)2和 Ca (H2PO4)2 磷酸鋅鈣和磷酸鋅鐵 淺灰→深灰 1-15
錳系 Mn(H2PO4)2 和Fe(H2PO4)2 磷酸錳鐵 灰→深灰 1-60
錳鋅系 Mn(H2PO4)2 和Zn(H2PO4)2 磷酸鋅、磷酸錳、磷酸鐵混合物 灰→深灰 1-60
鐵系 Fe(H2PO4)2 磷酸鐵
深灰色 5-10
2.磷化膜組成
磷化膜為閃爍有光,均勻細致,灰色多孔且附著力強的結晶,結晶大部分為磷酸鋅,小部分為磷酸氫鐵。鋅鐵比例取決于溶液成分、磷化時間和溫度。
3、性質
(1)耐蝕性
在大氣、礦物油、植物油、苯、甲苯中均有很好的耐蝕性,但在堿、酸、水蒸氣中耐蝕性較差。在200-300℃時仍具有一定的耐蝕性,當溫度達到450℃時膜層的耐蝕性顯著下降。
(2)特殊性質
如增加附著力,潤滑性,減摩耐磨作用。
六、磷化工藝流程
除油除銹→水洗→磷化→水洗→磷化后處理
七、影響因素
1、溫度
溫度愈高,磷化層愈厚,結晶愈粗大。
溫度愈低,磷化層愈薄,結晶愈細。
但溫度不宜過高,否則Fe2+ 易被氧化成Fe3+,加大沉淀物量,溶液不穩(wěn)定。
2、游離酸度
游離酸度指游離的磷酸。其作用是促使鐵的溶解,已形成較多的晶核,使膜結晶致密。
游離酸度過高,則與鐵作用加快,會大量析出氫,令界面層磷酸鹽不易飽和,導致晶核形成困難,膜層結構疏松,多孔,耐蝕性下降,令磷化時間延長。
游離酸度過低,磷化膜變薄,甚至無膜。
3、總酸度
總酸度指磷酸鹽、硝酸鹽和酸的總和。總酸度一般以控制在規(guī)定范圍 上限為好,有利于加速磷化反應,使膜層晶粒細,磷化過程中,總酸度不斷下降,反映緩慢。
總酸度過高,膜層變薄,可加水稀釋。
總酸度過低,膜層疏松粗糙。
4、PH值
錳系磷化液一般控制在2-3之間,當PH﹥3時,共件表面易生成粉末。當PH‹1.5時難以成膜。鐵系一般控制在3-5.5之間。
5、溶液中離子濃度
①溶液中Fe2+極易氧化成 Fe3+,導致不易成膜。但溶液中Fe2+濃度不能過高,否則,形成的膜晶粒粗大,膜表面有白色浮灰,耐蝕性及耐熱性下降。
②Zn2+的影響,當Zn2+濃度過高 ,磷化膜晶粒粗大,脆性增大,表面呈白色浮灰;當Zn2+濃度過低,膜層疏松變暗。
八、磷化后處理
目的:增加磷化膜的抗蝕性、防銹性。
九、磷化渣
1、磷化渣的影響
①磷化中生成的磷化渣,既浪費藥品又加大清渣工作量,處理不好還影響磷化質量,視為不利。
②磷化中在生成磷化渣的同時還會揮發(fā)出磷酸,有助于維持磷化液的游離酸度,保持磷化液的平衡,視為有利。
2、磷化渣生成的控制
①降低磷化溫度。
②降低磷化液的游離酸度。
③提高磷化速度,縮短磷化時間。
④提高NO-3 與PO3-4的比值。
十、磷化膜質量檢驗
1、外觀檢驗
肉眼觀察磷化膜應是均勻、連續(xù)、致密的晶體結構。表面不應有未磷化的殘余空白或銹漬。由于前處理的方法及效果的不同,允許出現色澤不一的磷化膜,但不允許出現褐色。
2、耐蝕性檢查
(1)浸入法
將磷化后的樣板浸入3﹪的氯化鈉溶液中,經兩小時后取出,表面無銹漬為合格。出現銹漬時間越長,說明磷化膜的耐蝕性越好。
(2)點滴法
室溫下,將藍點試劑滴在磷化膜上,觀察其變色時間。磷化膜厚度不同,變色時間不同。厚膜﹥5分鐘,中等膜﹥2分鐘,薄膜﹥1分鐘。